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Introduction 
A continuum strength model for tantalum was developed in 2007 using a multiscale 

approach[1]. This was our first attempt at connecting simulation results from atomistic to 
continuum length scales, and much was learned that we were not able to incorporate into the 
model at that time. The tantalum model described in this report represents a second cut at pulling 
together multiscale simulation results into a continuum model. Insight gained in creating 
previous multiscale models for tantalum and vanadium [2] was used to guide the model 
construction and functional relations for the present model. While the basic approach follows 
that of the vanadium model, there are significant departures. Some of the recommendations from 
the vanadium report were followed, but not all. Results from several new analysis techniques 
have not yet been incorporated due to technical difficulties. 

Molecular dynamics simulations of single dislocation motion at several temperatures 
suggested that the thermal activation barrier was temperature dependent [2]. This dependency 
required additional temperature functions be included within the assumed Arrhenius relation. 
The combination of temperature dependent functions created a complex model with a non unique 
parameterization and extra model constants. The added complexity had no tangible benefits. The 
recommendation was to abandon the strict Arrhenius form and create a simpler curve fit to the 
molecular dynamics data for shear stress versus dislocation velocity [2].  

Functions relating dislocation velocity and applied shear stress were constructed vor 
vanadium for both edge and screw dislocations [2]. However, an attempt to formulate a robust 
continuum constitutive model for vanadium using both dislocation populations was unsuccessful; 
the level of coupling achieved was inadequate to constrain the dislocation evolution properly. 
Since the behavior of BCC materials is typically assumed to be dominated by screw dislocations, 
the constitutive relations were ultimately built using only the screw relations. In light of this, the 
screw dislocation mobility relation is chosen as the starting point for the present tantalum model. 
Edge dislocations are not included explicitly in the current model. 

A significant change from the previous models is in the functional dependence of the 
dislocation evolution equations. The prior multiscale models assumed that the dislocation 
evolution rate depended on stress as well dislocation velocity. This crated an implicit dependence 
on the kinetic relation and required an iterative solution for the dislocation density. In the present 
model the integration scheme is simplified by casting the dislocation evolution terms of strain 
rate and current dislocation density. 

The final notable change was in the transition relation from the thermally activated regime 
to phonon drag. Historically, and in the prior models, this transition had been through a harmonic 
average on the strain rates making it impossible to determine the stress directly when given the 
plastic strain rate. After considering alternative transition relations, it was determined that an 



equally suitable fit to the molecular dynamics simulation data in the transition region could be 
constructed by averaging stresses rather than strain rates. 

The end result of these enhancements is a simpler (fewer parameters) and more straight 
forward model formulation where the material strength can be evaluated directly when given the 
plastic strain rate, temperature, pressure and the dislocation density at the beginning of the time 
step. This greatly improves the computational efficiency and robustness over the prior models 
where additional iteration loops were required. 

Model Construction 
The basis for the macroscale model is plastic deformation by thermally activated dislocation 

motion and strain hardening resulting from elastic interactions among dislocations. The 
connection between dislocation mechanics and macroscale plasticity variables is through 
traditional models. Dislocation density is evolved as the state variable that characterizes the flow 
strength of the material. The primary focus for the model is the temperature, strain rate and 
pressure dependence of the plastic flow strength. Microstructure and mechanisms at the grain 
scale are neglected, and the material is assumed to be isotropic following J2-Flow theory 
plasticity with an associative flow rule.  

Connection to continuum variables 
The average dislocation velocity, ݒ, on a particular slip system is assumed to be related to 

the macroscopic plastic strain rate, ߝሶ௣, through Orowan’s relation,  ݒ ൌ ܾߩߟܯሶ௣ߝ                                                                       ሺ1ሻ 

where M is the Taylor factor, ߩ the dislocation density, b the Burger’s vector, and ߟ an order-one 
constant. Many descriptions of the Orowan relation emphasize that the mobile dislocation 
density should be utilized. However, within the context of the dislocation dynamics simulations 
that are used as the basis for the continuum model, there is no distinction between mobile and 
immobile dislocations; some dislocations just have a velocity near zero. Hence, the velocity in 
Eq. 1 represents some average of a velocity distribution.  

The von Mises effective stress, ߪ௘, is assumed to be related to resolved shear stress on the 
slip systems through the Taylor factor.  ߪ௘ ൌ ܯ ቂ൫߬௔ ൅ ߶஺߬̂ሺߩሻ൯ ൅ כ߬ ቀ߬௣ ൅ ߶்߬̂ሺߩሻቁቃ                                   ሺ2ሻ 

The strength is partitioned into athermal and thermal contributions given by the first and second 
terms in the square brackets, respectively. In the first term, ߬௔is the athermal stress representing 
some inherent crystal lattice resistance to dislocation motion. It does not depend on strain rate or 
temperature. The rate and temperature independent strengthening due to forest dislocations is 
included through ߬̂ሺߩሻ. In the thermal contribution, ߬כ is a dimensionless multiplier accounting 
for temperature and strain rate dependence of dislocation glide. It multiplies a base strength that 
is comprised of the Peierls stress, ߬௣ , and strength from dislocation interactions, ߬̂ሺߩሻ. Note that ߬̂ሺߩሻ appears in both the athermal and thermal terms of Eq 2. The parameters ߶஺ and ߶் provide 
a means to apportion the forest dislocation contribution between the thermal and athermal terms.  



Contributions from Molecular Statics and Dynamics 
The Peierls stress appearing in Eq. 2 and later relations was calculated through molecular 

statics simulations at 0K [1]. The pressure dependence of ߬௣ for screw dislocations was 
determined to scale with shear modulus over a wide range of pressures. In order to include this 
pressure dependence but not have the strength model tied to a specific shear modulus 
parameterization, the pressure scaling is applied through an independent parameter. ߬௣ ൌ  ߬௣଴ሺ1 ൅  ሻ                                                           ሺ3ሻܲߞ

The pressure scaling parameter will be set equal to the pressure dependence of the shear modulus 
for the current parameterization, but providing an independent parameter allows the flexibility to 
choose other values. 

Molecular dynamics simulations were used to determine the relationship between 
dislocation velocity and shear stress. The tantalum MGTP potential was used to simulate motion 
of a single screw dislocation at a range of temperatures and applied shear strain rates. An average 
dislocation velocity and shear stress on the simulation box were determined for each calculation, 
and the results are shown as data points in Figure 1.  

 

 
Figure 1.  Shear stress as a function of screw dislocation velocity at several temperatures. 

 
The numerical data clearly show two regimes. At lower dislocation velocities and stresses 

the dislocation motion thermally activated. The temperature sensitivity is evident at these lower 
velocities. At higher velocities and stresses the numerical data suggest a linear mobility 
relationship with little temperature sensitivity. It is assumed to be independent of temperature for 
the model fits. The transition between the two regimes occurs over a relatively small strength 
range near the Peierls stress.  

Curve fits were constructed for each regime independently, and the resulting functions were 
connected with a smooth transition function. The fits are plotted as solid lines in Figure 1. The 
functions are normalized by the Peierls stress, ߬௣ , giving the nondimensional relations 
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߬̃T୦ୣ୰୫ ൌ ଴ߙ exp ൬ Tߙ௧൰ ቊexp ቈቆߚ଴ ൅ T
β୲ቇ ln ൬ ଴ݒܿ ൅ ଴෦൰቉ݒ െ exp ቈቆߚ଴ ൅ T

β୲ቇ lnሺݒ଴෦ሻ቉ቋ          ሺ4ሻ 

in the thermally activated regime and ߬̃D୰ୟ୥ ൌ ଴߯  ۃ ൤ ଴ݒܿ െ ߯ଵ൨ ට1 െ ൫ݒ ܿ଴ൗ ൯ଶ൘ ۄ                                               ሺ5ሻ 

in the drag regime. The angled brackets in Eq. 5 imply that the drag strength should be zero if the 
function evaluates to a negative value. The denominator in Eq. 5 is intended to elevate the stress 
as the dislocation velocity approaches the shear wave speed. Both Eqs 4 and 5 give zero stress at 
zero dislocation velocity to provide a continuous function as the strain rate approaches zero. 

Equations 4 and 5 are joined with the transition function ߬כ ൌ   ට ߬̃T୦ୣ୰୫ହ ൅ ߬̃D୰ୟ୥ହఱ                                                            ሺ6ሻ 

 is the dimensionless multiplier in Eq. 2. Multiplying by the Peierls stress within Eq. 2 כ߬ 
provides pressure dependence and imparts the correct dimensionality. The exponent 5 was 
determined to provide a good fit to the molecular dynamics data at the transition. Other than the 
temperature, T, and the reference sound speed, ܿ଴, the remaining parameters in Eqs. 4-6 are 
fitting parameters given in Table 1. 

Contributions from Dislocation Dynamics 
The dislocation mobility relations in Eqs 4-6 were implemented in the dislocation dynamics 

code to simulate the evolution of dislocation density and strain hardening. The dislocation 
density saturates at approximately 10% strain in calculations that were run sufficiently long. 
Saturation densities were also estimated from simulations to lower strains and from strain rate 
jump tests. These were used to determine a functional dependence for the saturated dislocation 
density. The saturation density was found to depend strongly on strain rate and weakly on 
temperature. Figure 2 shows the strain rate dependence along with a power law equation fit, 

 

 
Figure 2.  Saturation dislocation density as a function of strain rate. 
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Table 1      Model Parameters 
 ܾ଴ 2.86x10-10 ߶஺ 1.0 ߬௔ 15  MPa ߶் 0.0 ߬௣଴ 525  MPa 1.45 ߞ 1.0 ߟx10-5  MPa-1 ߩ଴௦ 1.1266x1011 m-2 ܿ଴ 2000 m/s ߝሶே 1 s-1 ݒ෤଴ 10-9 ܵ௢ 650 ߙ଴ 2.3643 n 0.59 ߙ௧ 1127 K R 1x1017 m-2 ߚ଴ 0.2757 ߚ 0.4 ߚ௧ 2548 K ܩ଴ 69000 MPa ߯଴ 37.166 M 3.08 ߯ଵ 0.03075   

Sୟ୲ߩ ൌ ଴ௌߩ ൬ߝሶ௣ߝሶே ൅ ܵ଴൰௡                                                        ሺ7ሻ 

Since errors in extrapolating to the saturation density appear to be as large as temperature 
dependence, the saturation density is taken to be independent of temperature. 

Dislocation density is assumed to increase proportionally to existing density as there are 
more obstacles to react and create additional loops. The dislocation density decreases by 
annihilation within a capture radius which is assumed to depend quadratically on density. In 
primitive form, the evolution equation is written as a function of dislocation density and velocity ߩሶ ൌ ሺߩܪ െ  ሺ8ሻ                                                                 ݒଶሻߩܣ
However, in light of Orowan’s relation, Eq. 1, it is possible to rewrite the evolution relation in 
terms of plastic strain rate and saturation density. ߩሶ ൌ ܴ ൬1 െ Sୟ୲൰ߩߩ  ሶ௣                                                             ሺ9ሻߝ

where R is the growth rate for dislocation density far from the saturation density. Closed form 
integration of Eq. 9 over a time step provides the dislocation density at the end of an arbitrarily 
sized time increment in terms of the value at the beginning of the time step, ߩ௧, and the saturation 
value.  ߩ ൌ ௧ߩ  exp ൬െܴ ௌ௔௧ߩݐሶ௣Δߝ ൰ ൅ Sୟ୲ߩ ൤1 െ exp ൬െܴ Sୟ୲ߩݐሶ௣Δߝ ൰൨                                 ሺ10ሻ 

 
What remains is specification of how the evolving dislocation density contributes to strain 

hardening through ߬̂ሺߩሻ in Eq. 2. Experimental evidence collected over many years suggests that 
the strength increases proportionally to the square root of the dislocation density. The 
proportionality constant is commonly assumed to be the product of the Burger’s vector, the shear 
modulus and an order one constant. That common form is adopted here, as illustrated by Eq. 11.  ߬ሺߩሻ ൌ ଴ሺ1ܩܾߚ ൅  ሺ11ሻ                                                      ߩሻඥܲߞ



In Eq. 11, the pressure dependence of the shear modulus is represented explicitly as it is for the 
Peierls stress in Eq. 3. This uncouples the strength model from the shear modulus model. The 
Burger’s vector, on the other hand, is the current value computed from the reference value, ܾ଴, 
and the current volume strain. 

Comparison with data 
The model presented above was constructed entirely from multiscale simulation predictions 

with no adjustments to match experimental data. In order to determine how well the model 
represents observation, comparisons are made with several data sets available in the literature.  

 Figure 3 shows the temperature dependence of strength measured under a broad range of 
experimental conditions. Many of the data sets are at strain rates of 10-4 sec-1 and 3x103 sec-1. 
Predictions from the multiscale model were calculated at these two rates assuming a saturated 
dislocation density from Eq. 7. These are plotted as solid and dashed lines along with the data in 
Figure 3. The model predicts the strength level fairly well, but the temperature dependence of the 
strength predictions is not as great as it is in the experiments.  

 

 
Figure 3. Comparison of the temperature dependence of the multiscale model predictions 
with a range of data at several strain rates. 

 
The molecular dynamics data used to construct the model were provided at 300K, 700K and 

1000K. Results extrapolated outside of this range, particularly below 300K, tend to have the 
largest deviations. The MD simulations should be repeated at lower temperatures to determine 
whether or not the experimentally observed temperature sensitivity is replicated 

A similar comparison is made by plotting the strength predictions against strain rate at 300K 
in Figure 4. The agreement between the data and predictions is not favorable at lower rates, and 
it is observed that the strain rate sensitivity predicted by the model is significantly greater than in 
the experiments. As with the temperature sensitivity, part of the reason for the poor fit may be 
the stain rate range over which velocity data were calculated in the MD simulations. Only 
velocities corresponding to strain rates of 104 sec-1 and higher were available to fit the continuum 
model. 
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Figure 4. Comparison of the strain rate dependence of the multiscale model predictions 
with data from several studies. 

 
 The model was implemented as part of the MS material model library in ALE3D for use in 

full-scale hydrodynamic calculations. An example illustrating the model predictions in the 
dynamic range is the simulation of a tantalum gas gun experiment with a multi-component flyer 
comprised of PMMA (6.16mm), tungsten (1.6 mm) and sapphire (3.171 mm) disks impacting a 
tantalum target (5.0225 mm) backed by a sapphire window [3]. The configuration is shown in 
Figure 5. The impact velocity was approximately 133 m/s.  

Velocimetry at the tantalum-window interface is shown as the short-dashed line in Figure 6a 
(taken from [3]) along with results from two models (solid and long dashed lines) fit to the data 
in the original paper. Figure 6b shows one of the same model fits as the gray line along with the 
multiscale model prediction as the dark line. The multiscale model predicts a low HEL compared 
to the experiment, but the flattened hump from the multiscale model at 0.0065 m/s is in better 
agreement with the experiment than the original model fit. Another prominent feature is the 
softened pullback at approximately 2 µs. In the original paper a Baushinger effect was used to 
capture a gradual pullback. The multiscale model produces a similar effect through evolution of 
internal history variable. 

 

 
Figure 5.  Material layout for gas gun experiment 
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Figure 6.  Results from a) gas gun experiment and original two models [3] and b) the 
multiscale tantalum model. 

High Rate Application 
One of the target applications for the multiscale tantalum model is simulation of laser driven 

Rayleigh-Taylor instability experiments. Here high-pressure plasma impinges on a surface with 
prescribed sinusoidal perturbations. Plastic deformation of the surface is unstable under the high 
pressure loading and the perturbations grow.  

To evaluate the model robustness and behavior for these applications, a pressure boundary 
condition was imposed on the surface of a 49 µm thick tantalum target glued with a 5 µm thick 
layer of epoxy to a 500 µm thick Lithium-Floride window [4]. The initial ripple amplitude was 3 
µm and the wavelength was 50 µm. A blow-up of the initial target surface is shown in Figure 7a 
and the pressure drive is depicted in Figure 7b.  

                
Figure 7. Set-up for Rayleigh-Taylor growth simulations: a) initial rippled target surface 
and b) pressure drive 
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Plots of dislocation velocity indicate that the ripple growth early in the simulation is in the 
phonon drag regime while growth at later times may drop below the drag threshold. The ripple 
growth in the experiments is determined by quantitative radiography which looks at the target 
thickness in addition to any transient density variations. For these simulations the growth factor 
is characterized by the current peak to valley distance normalized by the original amplitude. The 
drive is relatively weak compared to the material strength, and the ripple growth is small. A plot 
of the growth factor evolution is shown in Figure 8 along with predicted growth factors for the 
Steinberg-Guinan, Steinberg-Lund and Preston-Tonks-Wallace models. The results suggest that 
the multiscale model is stiffer that these. However, the stress in the Steinberg-Lund model hits 
the prescribed cap, and that model would be much stronger if the cap were raised. 

 
 
Figure 8.  Predicted Rayleigh-Taylor growth factors 

Discussion 
A second generation multiscale model for tantalum was developed from molecular dynamics 

and dislocation dynamics simulation data. The underlying multiscale calculations were run at 
relatively high strain rates so the model fits are most appropriate for strain rates above 103 sec-1. 
Direct measurement of material strength is difficult to impossible in this range, so the model 
cannot be validated directly over much of the range in which it was constructed. However, 
comparisons at 103 sec-1 show reasonable agreement, and it is anticipated that the model 
predictions would also be reasonable at higher rates. Significant data exist at lower strain rates, 
and the agreement between model and data degrades as the strain rate is reduced. Whether this is 
an issue with model extrapolation or with the underlying simulation data has not been 
determined at this time.  

The situation is similar with temperature. The model was constructed using simulation data 
at 300K, 700K and 100K, and the comparisons with data at103 sec-1 seem reasonable in that 
temperature range. The strength predictions extrapolated to lower temperatures are not in good 
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agreement with the available data, and one is not sure whether the problem is with extrapolation 
or deficiencies in the underlying data that aren’t apparent in the narrower temperature range. 

In the course of running the multiscale simulations, several unexpected trends appeared that 
have prompted a closer look at the underlying physics, parameterization of the lower scale 
models, and how the codes are run. One series of simulations involved running the molecular 
dynamics code at elevated pressure to determine the pressure dependence of the dislocation 
mobility relations. The pressure dependence was not following the anticipated trends, so further 
research and validation are required before accepting the results. Another question arose when 
comparing the temperature sensitivity of the dislocation dynamics predictions to existing data. 
The results showed considerably less temperature sensitivity than the input mobility relations. 
The reason for this is not understood and is also being investigated.  

The unexpected results compelled a change in plan for constructiing the current continuum 
model. Rather than basing the model on multiscale simulation results that are not understood or 
are questionable, those results were disregarded for purposes of model construction. A safe and 
conservative approach was taken for including the pressure and strain rate dependence. 
Consequently, the model follows expected trends, reflecting the traditional assumptions. 
However, this conservative approach disregards one of the main drivers for the multiscale 
modeling effort – determining strength dependencies at extreme conditions where definitive 
experiments are not possible. Therefore, the issues encountered must be resolved. Understanding 
and trusting results from all lengths scales is crucial in the multiscale modeling paradigm. The 
uncertainties uncovered here have prompted a renewed look at the quantitative predictions of 
models at all length scales. 
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